MIT Kerberos 1.7/1.8

Luke Howard
lukeh@padl.com
lhoward@mit.edu
Introduction

- Founder, PADL
- RFC 2307
- Novell DSfW (née XAD)
- Consultant, MIT
- Kerberos 1.7
 - Windows interop
 - Developed whilst at Novell July 2006, open sourced December 2008
- Kerberos 1.8
- AES-CCM
1.7

- Aliases and name canonicalisation
- RFC 3244 (set password)
- RFC 4537 (enctype negotiation)
- `gss_wrap_iov`
- GGF extensions
- `GSS_C_DCE_STYLE`
- `GSS_C_INQ_SSPI_SESSION_KEY`
- GSS authdata API
- MS PAC APIs
- Mechglue SPI
- KDC authdata SPI
- KDC mech invoke
- Services4User in KDC
Referrals

- draft-ietf-krb-wg-kerberos-referrals
- KDB backend can return a different principal to that requested
- KDC does not proscribe information model
- Support in LDAP backend (better in 1.8)
- Client library support (better in 1.8)
- Windows interop
 - Canonicalise client if requested in AS-REQ
 - Only canonicalize TGS server name in AS-REQ
RFC 3244 (set password)

• Support password change over TCP
• Support set password
• Subject to same ACLs as kadm5 clients
RFC 4537 (enctype nego)

- Client proposes enctypes in AP-REQ authdata
- If server chooses a different enctype, a subkey with this enctype is returned
- Permits clients and servers to use new enctypes without upgrading KDC
gss_wrap_iov

- `#include <gssapi/gssapi_ext.h>`
- Modelled on SSPI EncryptMessage
- Principally for Windows RPC interop
- Multiple buffer, in-place encryption
- Associated data buffers (AEAD)
- Flexible arrangement of input buffers
 - HEADER | SIGN_DATA | DATA | PADDING | TRAILER
 - PADDING and TRAILER are optional for DCE
- Unwrap without understanding buffer boundaries
 - STREAM | SIGN_DATA | DATA
- `gss_wrap_aead` provides a simplified API for a single encrypt, single assoc buffer
GGF extensions

- Buffer sets
- Mechanism-specific glue APIs/SPIs
 - gss_inquire_sec_context_by_oid
 - gss_inquire_cred_by_oid
 - gss_set_sec_context_option
- Mechanism-specific glue SPIs
 - gssspi_set_cred_option
 - gssspi_mech_invoke
GSS_C_DCE_STYLE

- RFC 4757
- Used by Microsoft RPC Kerberos mech
- Avoids replay cache requirement by always requiring client and server to prove session key knowledge
- Varied token format
 - Context tokens omit GSS framing
 - Wrap tokens omit variable length encoding
• Exposes session key for MS interop
 – CIFS
 – DRS
 – Not for general purpose use!

• `gss_inquire_sec_context_by_oid(GSS_C_INQ_SSPI_SESSION_KEY)`

• Buffer set contains
 – [0] Session key
 – [1] Kerberos encryption type as OID
GSS authdata API

- Based on Heimdal APIs
- Kerberos mechanism specific
- `gsskrb5_extract_authz_data_from_sec_context`
- `gsskrb5_extract_authtime_from_sec_context`
- Requires caller to explicitly verify MS PAC (this differs from Heimdal)
- Wait for 1.8 and use naming extensions
 - These do the heavy lifting for you
MS PAC APIs

• Based on Heimdal APIs
• krb5_pac_parse
• krb5_pac_get_types
• krb5_pac_get_buffer
• krb5_pac_add_buffer
• krb5_pac_verify
• krb5int_pac_sign
• krb5_pac_free
Mechglue SPI

- Dynamic loading of GSS mechanisms
 - Export dispatch table
 - Export GSS APIs
- Support for new APIs and SPIs
- Specific NTLM support
- SPNEGO interop with Samba
- Mechanism can implement `gss_wrap_iov`
 - `gss_wrap`
 - `gss_wrap_aead`
KDC authdata V1/V2 SPI

• Extended version of V0 SPI from 1.6
• Supports TGS-REQ as well as AS-REQ
• Built-in methods
 – Copy TGT authdata
 – Invoke DB authdata SPI
 – Invoke V0 SPI plugins
• Interface is unstable: V1 in 1.7, V2 in 1.8
• Plugin called with
 – Client, server, TGS DB entry
 – Encoded and decoded request
 – Services4User information
 – Reply
• KRB5-PADATA-PAC-REQUEST
KDC mech invoke

- `#include <kdb_ext.h>`
- KDC to KDB backend private interface
 - Add new methods to KDB SPI without changing vtable
 - Avoids updating every backend, kadm5, etc
- Sign authdata
 - Similar to V1 SPI, for KDB backends that issue authdata
- Check transited realms
- Check policy before processing request
- Audit after processing request
- Check constrained delegation policy
Services4User in KDC

- **Protocol transition (S4U2Self)**
 - Service can get a ticket to itself on behalf of any principal
 - May use ticket for constrained delegation subject to policy
 - W2K3 variant only (W2K8 in 1.8)

- **Constrained delegation (S4U2Proxy)**
 - S1 wishes to authenticate to S2 on behalf of C
 - TGS-REQ \{ S1, S2, STkt(C, S1) \}
 - TGS-REP \{ STkt(C, S2) \}
 - Requires AD-like (DSfW) backend

- **KDC-side support only**
 - 1.8 has client library (service) support
1.8

- Services4User GSS API
- Naming extensions
- Principal lockout
- HDB shim
Services4User GSS API

- **gss_acquire_cred_impersonate_name**
 - Protocol transition
 - Returns a credential handle given a name

- **gss_accept_sec_context**
 - Constrained delegation
 - Always returns a delegated cred handle if
 - `deleg_cred_handle` != NULL
 - `verifier_cred_handle` has GSS_C_BOTH usage
 - No application changes required
 - Actual S4U2Proxy request done at context init

- krb5 API is not exposed
- No certificate protocol transition support yet
Naming extensions

- draft-ietf-kitten-naming-exts
- Attribute-based API for interrogating and setting authorization information
 - gss_inquire_name
 - gss_get_name_attribute
 - gss_set_name_attribute
 - ...
- Attribute names are URIs (e.g. urn:mspac:logon-info)
- Known authdata elements are always verified, however:
 - Caller should check authenticated flag on returned attribute
- Builtin support for MS PAC
- krb5 SPI layer for new authdata types
- Sample code for AD-KDCIssued
 krb5 and KDC plugins for positive authdata
- Attributes set on initiator cred handle are sent in AP-REQ
Principal lockout

- Lock principal out after a certain number of preauthentication failures
- Roughly follow Windows / LDAP password policy model
- DB2 and LDAP support
 - DB2 lockout attributes are non-replicated
- Reuses existing KDB attributes
 - last_success
 - last_failed
 - fail_auth_count
- Extensions for lockout policy
 - pw_max_fail
 - pw_failcnt_interval (period after which fail_auth_count reset)
 - pw_lockout_duration (period after which account unlocked)
- Uses policy/audit hooks introduced in 1.7
- Changes to kadm5 and replication protocols
HDB bridge

• Load Heimdal database backends
• Also loads Heimdal windc plugins
 – windc_pac_generate
 – windc_pac_verify
 – windc_client_access
• Read/write support
• Samba4 with MIT KDC
• Test migrations
• kdb5_util dump –mkey_convert
Post-1.8: AES-CCM

- RFC 5116 section 5.3 / NIST 800-38
 - ENCTYPE_AES128_CCM_128
 - ENCTYPE_AES256_CCM_128
- Key derivation
 - $K_c = DK(\text{base-key}, \text{usage} | 0xCC)$
- AEAD
- Nonce/payload length is parameterized
- CCM implementation is cipher agnostic
 - src/lib/crypto/krb/dk/dk_ccm.c
 - New ciphers need only implement counter mode
- Tested with DCE RPC GSS mechanism
- users/lhoward/aes-ccm branch
1.7 references

• http://k5wiki.kerberos.org/wiki/Projects/DBAliases
• http://k5wiki.kerberos.org/wiki/Projects/Aliases
• http://k5wiki.kerberos.org/wiki/Projects/RFC_3244
• http://k5wiki.kerberos.org/wiki/Projects/RFC_4537
• http://k5wiki.kerberos.org/wiki/Projects/AEAD_encryption_API
• http://k5wiki.kerberos.org/wiki/Projects/GSSAPI_DCE
• http://k5wiki.kerberos.org/wiki/Projects/PAC_and_principal_APIs
• http://k5wiki.kerberos.org/wiki/Projects/GSS-API_mechanism_plug-in_support
1.8 references

• http://k5wiki.kerberos.org/wiki/Projects/Services4User
• http://k5wiki.kerberos.org/wiki/Projects/VerifyAuthData
• http://k5wiki.kerberos.org/wiki/Projects/Lockout
• http://k5wiki.kerberos.org/wiki/Projects/HDBBridge
Questions